Spatial vector data
About
Spatial vector files are geospatial files that represent geographic features using points, lines, and polygons. Spatial vector files can include GeoJSON (.json), ESRI shapefiles (.shp), GeoPackage (.gpkg), GeoParquet (.parquet), Google Keyhole Markup Language (.kml, .kmz), etc.
Processing spatialVector
entities
In addition to the usual metadata information we’ll need (description, attributes, physical), we’ll need some additional metadata to create a spatialVector
entity. In particular, we’ll need to know the geometry and coordinate reference system of the file.
To do this, we can either get this information from the submitter directly or upload the vector file into QGIS (or another GIS software) to explore its metadata. Otherwise, it will take some extra sleuthing and file processing in R from our end. Here we’ll go over some techniques to gather this information from vector files. Then, we’ll show how to create a spatialVector
entity within an EML doc.
We’ll start by setting our node, reading in the data package, and gathering the PID of our geospatial file:
library(sf)
library(dataone)
library(datapack)
library(uuid)
library(arcticdatautils)
library(EML)
### Set up node and gather data package
d1c <- dataone::D1Client("...", "urn:node:...") # Setting the Member Node
resourceMapId <- "..." # Get data package PID (resource map ID)
dp <- getDataPackage(d1c, identifier = resourceMapId, lazyLoad = TRUE, quiet = FALSE) # Gather data package
### Load in Metadata EML
metadataId <- selectMember(dp, name="sysmeta@formatId", value="https://eml.ecoinformatics.org/eml-2.2.0") # Get metadata PID
doc <- read_eml(getObject(d1c@mn, metadataId)) # Read in metadata EML file
### Read in spatial vector file
spatial_vector_pid <- selectMember(dp, "sysmeta@fileName", "exampleFile.zip")
Reading in the vector file
We’ll first need to read in the vector file to extract the necessary metadata.
ESRI shapefiles
To find information from ESRI shapefiles, we can first use a function arcticdatautils::read_zip_shapefile()
.
Exploring vector file for metadata
To find information from ESRI shapefiles, GeoJSONs, GeoPackages, and Parquet files, we can use the sf
library again to find the coordinate reference system and geometry.
To reference the names of the coordinate reference systems, we can use arcticdatautils::get_coord_list()
.
Edit format ID
Next, we’ll want to check the format ID and, if necessary, change the format ID to reflect the correct file type. If it needs to be changed to an ESRI shapefile, we’ll do the following:
spatial_vector_pid <- selectMember(dp, "sysmeta@fileName", "exampleFile.zip")
sysmeta <- dataone::getSystemMetadata(d1c@mn, spatial_vector_pid)
sysmeta@formatId <- "application/vnd.shp+zip"
dataone::updateSystemMetadata(d1c@mn, spatial_vector_pid, sysmeta)
You can check for format IDs in this documentation.
Creating spatialVector
entity
Next, we’ll be creating our spatialVector
entity. We can use an arcticdatautils
function to do this. Then, we’ll add it to the EML doc.
One thing we’ll need for this entity is an attribute list. If one was already created from the web editor, you can copy that over. Otherwise, you can use R to create and add one for this file. The example code below will assume that we’re copying the attribute list over from the otherEntity
of an ESRI shapefile.
spatialVector <- arcticdatautils::pid_to_eml_entity(d1c@mn,
spatial_vector_pid,
entity_type = "spatialVector",
entityName = "exampleFile.zip",
entityDescription = "spatial vector description",
attributeList = doc$dataset$otherEntity[[i]]$attributeList,
geometry = "Polygon",
spatialReference = "list(horizCoordSysName = GCS_North_American_1983"))
doc$dataset$spatialVector[[1]] <- spatialVector
doc$dataset$otherEntity[[i]] <- NULL # removing the previous otherEntity of the file
Finally, we’ll run eml_validate(doc)
to make sure everything is fine.
Example script
Here is an example script combining everything when processing an ESRI shapefile:
### Set up node and gather data package
d1c <- dataone::D1Client("PROD", "urn:node:ARCTIC") # Setting the Member Node
resourceMapId <- "..." # Get data package PID (resource map ID)
dp <- getDataPackage(d1c, identifier = resourceMapId, lazyLoad = TRUE, quiet = FALSE) # Gather data package
### Load in Metadata EML
metadataId <- selectMember(dp, name="sysmeta@formatId", value="https://eml.ecoinformatics.org/eml-2.2.0") # Get metadata PID
doc <- read_eml(getObject(d1c@mn, metadataId)) # Read in metadata EML file
### Creating Spatial Vector
# read in shapefile
shp_pid <- selectMember(dp, "sysmeta@fileName", "PeatTess.zip")
shapefile <- arcticdatautils::read_zip_shapefile(d1c@mn, shp_pid)
# get coordinate system
sf::st_crs(shapefile) # -> GCS_North_American_1927
# find geometry of shapefile
sf::st_geometry(shapefile) # -> polygon
### Edit formatId
# Format ID
vector_pid <- selectMember(dp, "sysmeta@fileName", "PeatTess.zip")
sysmeta <- getSystemMetadata(d1c@mn, vector_pid)
sysmeta@formatId <- "application/vnd.shp+zip"
updateSystemMetadata(d1c@mn, vector_pid, sysmeta)
### Create spatial vector entity
spatialVector <- pid_to_eml_entity(d1c@mn,
shp_pid,
entity_type = "spatialVector",
entityName = "PeatTess.zip",
entityDescription = "1km tessellation of the Alaska peatland map",
attributeList = doc$dataset$otherEntity$attributeList,
geometry = "Polygon",
spatialReference = list(horizCoordSysName = "GCS_North_American_1927"))
# add spatial vector to doc
doc$dataset$spatialVector[[1]] <- spatialVector
# NULL the corresponding otherEntity
doc$dataset$otherEntity <- NULL
eml_validate(doc)