Use Case 3 - Processing Several Datasets
Julien Brun, Mitchell Maier, Irene Steves and Kristen Peach, NCEAS
2024-08-20
Source:vignettes/use03_dataset-batch-processing.Rmd
use03_dataset-batch-processing.Rmd
Summary
This vignette aims to showcase a use case using the 2 main functions
of metajam
- download_d1_data
and
read_d1_files
using a data processing workflow developed by
the NCO synthesis working group Stream
Elemental Cycling.
The datasets used are from the LTER site - Luquillo and can be found in the PASTA data repository https://dx.doi.org/doi:10.6073/pasta/f9df56348f510da0113b1e6012fa2967. This data package is a collection of 8 datasets of stream water samples from 8 different locations of the Luquillo Mountains.
Our goal is to read the data for the 8 different sampling sites and aggregate them into one harmonized dataset. We will use the metadata to check if the data structures and units are the same across the 8 different sampling sites before performing the aggregation.
Constants
# Download the data from DataONE on your local machine
data_folder <- "Data_SEC"
# Ammonium to Ammoniacal-nitrogen conversion. We will use this conversion later.
coeff_conv_NH4_to_NH4N <- 0.7764676534
Download the datasets
# Create the local directory to store datasets
dir.create(data_folder, showWarnings = FALSE)
# Get the datasets unique identifiers
test_datasets_listing <- readr::read_csv(system.file("extdata", "LTER-SEC_DatasetsListing_SearchedData.csv", package = "metajam"))
# Keep only the LUQ related datasets
luq_test_datasets <- test_datasets_listing %>%
dplyr::filter(grepl("LUQ", .$`LTER site abbreviation`)) %>%
dplyr::select(`LTER site abbreviation`,
`Data Repository (PASTA) URL to Archive/Metadata`,
`Data Repository (PASTA) URL to File`,
`Data Repository (PASTA) Filename`) %>%
na.omit() %>%
dplyr::arrange(`Data Repository (PASTA) Filename`) # sort the data sets alphabetically
## Batch download the datasets
# the tidiest way
local_datasets <- purrr::map(.x = luq_test_datasets$`Data Repository (PASTA) URL to File`,
.f = ~ download_d1_data(.x, data_folder))
# the apply way
# local_datasets <- lapply(luq_test_datasets$`Data Repository (PASTA) URL to File`, download_d1_data, data_folder)
# the map way
# local_datasets <- map(luq_test_datasets$`Data Repository (PASTA) URL to File`, function(x) {download_d1_data(x, data_folder)})
At this point, you should have all the data and the metadata
downloaded inside your main directory; Data_SEC
in this
example. metajam
organize the files as follow:
- Each dataset is stored a sub-directory named after the package DOI and the file name
- Inside this sub-directory, you will find
- the data:
my_data.csv
- the raw EML with the naming convention file name +
__full_metadata.xml
:my_data__full_metadata.xml
- the package level metadata summary with the naming convention
file name +
__summary_metadata.csv
:my_data__summary_metadata.csv
- If relevant, the attribute level metadata with the naming convention
file name +
__attribute_metadata.csv
:my_data__attribute_metadata.csv
- If relevant, the factor level metadata with the naming convention
file name +
__attribute_factor_metadata.csv
: my_data__attribute_factor_metadata.csv
- the data:
Read the data and metadata in your R environment
# You could list the datasets dowloaded in the `Data_SEC` folder
# local_datasets <- dir(data_folder, full.names = TRUE)
# or you can directly use the outputed paths from download_d1_data
# Read all the datasets and their associated metadata in as a named list
luq_datasets <- purrr::map(local_datasets, read_d1_files) %>%
purrr::set_names(purrr::map(., ~.x$summary_metadata$value[.x$summary_metadata$name == "File_Name"]))
Perform checks on data structure
Is the data structure the same across sampling sites (datasets)? For example, do the datasets all have the same column names?
# list all the attributes
attributes_luq <- luq_datasets %>% purrr::map("data") %>% purrr::map(colnames)
# Check if they are identical by comparing all against the first site
for(ds in names(attributes_luq)) {
print(identical(attributes_luq[[1]], attributes_luq[[ds]]))
}
#> => We are good, same data structure across the sampling sites
Perform checks on the units
Is data reported in identical units? For example, in every dataset is CI reported in microgramsPerLiter?
# List all the units used
luq_units <- luq_datasets %>% purrr::map("attribute_metadata") %>% purrr::map(~.[["unit"]])
# Check if they are identical by comparing all against the first site
for(us in names(luq_units)) {
print(identical(luq_units[[1]], luq_units[[us]]))
}
#>!!! => The 2 last datasets have different units!!!!!!!!!!
# Let's check the differences
luq_units_merged <- luq_datasets %>%
purrr::map("attribute_metadata") %>%
purrr::map(. %>% select(attributeName, unit)) %>%
purrr::reduce(full_join, by = "attributeName")
## Rename
# Create the new names
luq_new_colnames <- names(luq_units) %>%
stringr::str_split("[.]") %>%
purrr::map(~.[1]) %>%
paste("unit", ., sep = "_")
# Apply the new names
colnames(luq_units_merged) <- c("attributeName", luq_new_colnames)
Fixing units discrepancies
# fix attribute naming discrepancies -- to be improved
# Copy the units for Gage height
luq_units_merged <- luq_units_merged %>%
dplyr::mutate(unit_RioIcacos = ifelse(test = attributeName == "Gage_Ht",
yes = "foot", no = unit_RioIcacos),
unit_RioMameyesPuenteRoto = ifelse(test = attributeName == "Gage_Ht",
yes = "foot", no = unit_RioMameyesPuenteRoto))
# Copy the units for NH4
luq_units_merged <- luq_units_merged %>%
dplyr::mutate(unit_RioIcacos = ifelse(test = attributeName == "NH4-N",
yes = "microgramsPerLiter", no = unit_RioIcacos),
unit_RioMameyesPuenteRoto = ifelse(test = attributeName == "NH4-N",
yes = "microgramsPerLiter",
no = unit_RioMameyesPuenteRoto))
# drop the 2 last rows
luq_units_merged <- head(luq_units_merged, -2)
### Implement the unit conversion for RioIcacos and RioMameyesPuenteRoto ----
# Simplify naming
RioIcacos_data <- luq_datasets$RioIcacos$data
RioIcacos_attrmeta <- luq_datasets$RioIcacos$attribute_metadata
## RioIcacos
# Fix NAs. In this dataset "-9999" is the missing value code. So we need to replace those with NAs
RioIcacos_data <- na_if(RioIcacos_data, "-9999")
# Do the unit conversion
RioIcacos_data <- RioIcacos_data %>%
dplyr::mutate( `Gage_Ht` = `Gage_Ht`* 0.3048)
# Update the units column accordingly
RioIcacos_attrmeta <- RioIcacos_attrmeta %>%
dplyr::mutate(unit = gsub(pattern = "foot", replacement = "meter", x = unit))
# Do the unit conversion for RioIcacos and RioMameyesPuenteRoto - NH4 to NH4-N
# Ammonium to Ammoniacal-nitrogen conversion
coeff_conv_NH4_to_NH4N <- 0.7764676534
# Unit conversion for RioIcacos and RioMameyesPuenteRoto - NH4 to NH4-N
RioIcacos_data <- RioIcacos_data %>% mutate( `NH4-N` = `NH4-N`* coeff_conv_NH4_to_NH4N)
# Update the main object
luq_datasets$RioIcacos$data <- RioIcacos_data
## RioMameyesPuenteRoto
# Simplify naming
RioMameyesPuenteRoto_data <- luq_datasets$RioMameyesPuenteRoto$data
RioMameyesPuenteRoto_attrmeta <- luq_datasets$RioMameyesPuenteRoto$attribute_metadata
#Replace all cells with the missing value code ("-9999") with "NA"
RioMameyesPuenteRoto_data <- na_if(RioMameyesPuenteRoto_data, "-9999")
#Tidy version of unit conversion
RioMameyesPuenteRoto_data <- RioMameyesPuenteRoto_data %>%
dplyr::mutate(`Gage_Ht` = `Gage_Ht`* 0.3048)
# Update the units column accordingly
RioMameyesPuenteRoto_attrmeta <- RioMameyesPuenteRoto_attrmeta %>%
dplyr::mutate(unit = gsub(pattern = "foot", replacement = "meter", x = unit))
# Do the unit conversion for RioMameyesPuenteRoto - NH4 to NH4-N
#In this dataset the NH4-N column is actually empty, so this is not necessary. But here is how you would do it if you had to.
RioMameyesPuenteRoto_data <- RioMameyesPuenteRoto_data %>%
dplyr::mutate( `NH4-N` = `NH4-N`* coeff_conv_NH4_to_NH4N)
# Update the main object
luq_datasets$RioMameyesPuenteRoto$data <- RioMameyesPuenteRoto_data
General Conclusion
- Although the column names were the same in all the datasets / sampling sites, looking at the metadata we discovered that 2 sampling sites are measuring stream gage height and NH4 concentration using different protocols.
- We used the metadata to perform the necessary unit conversions to homogenize the 8 datasets before merging them into one master dataset.
- During the merge process, we added a provenance column to be able to track the origin of each row, allowing users of the master datasets to check the original datasets metadata when necessary.