Meta-analysis workflow



Reasons for paper eliminations
ggplot(paperReasons, aes(Reason, Papers)) + geom_bar(stat = "identity", fill="blue") + coord_flip() + theme_grey(base_size = 18)



A range of drivers were investigated:

data.simple <- data %>% group_by(Driver) %>% count()
ggplot(na.omit(data.simple), aes(Driver, n)) + 
  geom_bar(stat = "identity", fill = "blue") + 
  coord_flip()+ theme_grey(base_size = 18)



Three main study types were represented:

data.simple <- data %>% group_by(StudyType) %>% count()
ggplot(na.omit(data.simple), aes(StudyType, n)) + 
  geom_bar(stat = "identity", fill = "blue") + 
  theme_grey(base_size = 18) + 
  coord_flip()





#### Age classes and definitions varied:

data$Age_class[grep('juvenile',data$Age_class)] <- 'Juvenile'
data.simple <- data %>% group_by(Age_class) %>% count()

ggplot(na.omit(data.simple), aes(Age_class, n)) + 
  geom_bar(stat = "identity", fill = "blue") + 
  theme_grey(base_size = 18) +
  coord_flip()



Effect sizes

m <- metagen(mean.EffectSize_d, error, studlab = Driver, data = treedata) #fit generic meta-analysis to an object

#viz (draw a standard forest plot or metaregression plot)
forest(m,leftcols = "Driver",rightcols = c("effect", "ci"), fontsize=12) #grid-based graphics so a bit of work to resize

Next Topic